SHRI RAMSWAROOP MEMORIAL UNIVERSITY End Semester Examination (2021-22)-Odd Semester

B.Tech.(CS,ME,EC,EE,CE) - I Year (I Sem)

Course Name: Mathematics-I	Code: BMA1001
Time: 02 Hours	Max Marks: 60

University Roll No.															
(To be filled by the Stud							Stude	ent)							

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

	ion A: Very Short Answer Type Questions mpt all the questions.	BL	CLO	Marks (10)
1.	Define Beta and Gamma functions.	BL1	CLO1	02
2.	State Lagrange's mean value theorem.	BL1	CLO1	02
3.	Show that the following matrix is unitary	BL2	CLO4	02
	$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$			
4.	Write $\varepsilon - \delta$ definition for limit of a function with two variables.	BL1	CLO3	02
5.	State Cayley-Hamilton theorem.	BL1	CLO4	02
	ion B: Short Answer Type Questions mpt any 03 out of 06questions.	BL	CLO	Marks (30)
1.	If $u = x \log xy$ and $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$.	BL3	CLO3	10
2.	Verify Rolle's theorem for the function $f(x) = 2x^{3} + x^{2} - 4x - 2in \left[-\sqrt{2}, \sqrt{2}\right]$	BL3	CLO3	10
3.	Obtain the directional derivative of $\phi = (x^2 + y^2 + z^2)^{-1/2}$ at the point P	BL5	CLO3	10
	(3, 1, 2) in the direction of the vector \vec{r} .			
4.	Find the value of λ for which the vectors $(1, -2, \lambda)$, $(2, -1, 5)$ and $(3, -5, 7\lambda)$ are linearly independent.	BL5	CLO4	10
5.	Using Maclaurin's theorem expand cos x in powers of x as far as the terms of third degree.	BL3	CLO1	10
6.	Find the value of $curl(\nabla r)$, where r is the magnitude of vector \vec{r} .	BL2	CLO3	10

	ion C: Long Answer Type Questions. mpt any 01 out of 04 questions.	BL	CLO	Marks (20)
1.	Find eigen values and eigen vectors of the given matrix	BL3	CLO4	20
	$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$			
2.	Find the dimension of box of maximum capacity, whose surface area is given.	BL5	CLO3	20
3.	Obtain the Fourier series for function $f(x) = x$ in the interval $[-\pi, \pi]$.	BL5	CLO2	20
4.	If V = $\frac{1}{\sqrt{x^2 + y^2 + z^2}}$, show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} + z \frac{\partial V}{\partial z} = -V$.	BL3	CLO3	20
